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Abstract. Degrees of freedom for high-order binary constrained flows of soliton equations
admitting 2× 2 Lax matrices are 2N + k0. It is known thatN + k0 pairs of canonical separated
variables for their separation of variables can be introduced directly via their Lax matrices. Here
we propose a new method to introduce the additionalN pairs of canonical separated variables and
N additional separated equations. The Jacobi inversion problems for high-order binary constrained
flows and for soliton equations are also established. This new method can be applied to all high-
order binary constrained flows admitting 2× 2 Lax matrices.

1. Introduction

For a finite-dimensional integrable Hamiltonian system (FDIHS), letm denote the number of
degrees of freedom, andPi, i = 1, . . . , m, be functionally independent integrals of motion
in involution, the separation of variables means to constructm pairs of canonical separated
variablesvk, uk, k = 1, . . . , m [1–3]

{uk, ul} = {vk, vl} = 0 {vk, ul} = δkl k, l = 1, . . . , m (1.1)

andm functionsfk such that

fk(uk, vk, P1, . . . , Pm) = 0 k = 1, . . . , m (1.2)

which are called separated equations. Equations (1.2) give rise to an explicit factorization
of the Liouville tori. For the FDIHSs with the Lax matrices admitting ther-matrices of
theXXX,XXZ andXYZ type, there is a general approach to their separation of variables
[1–6]. The corresponding separated equations enable us to express the generating function of
canonical transformations in completely separated form as an Abelian integral on the associated
invariant spectral curve. The resulting linearizing map is essentially the Abel map to the Jacobi
variety of the spectral curve, thus providing a link with the algebro-geometric linearization
methods given by [7–9].

The separation of variables for a FDIHS requires that the number of canonical separated
variablesuk should be equal to the number of degrees of freedomm. In some cases, the number
of uk resulting from the normal method may be less thanm and one needs to introduce some
additional canonical separated variables. So far very few models in these cases have been
studied. These cases remain to be a challenging problem [3].
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The separation of variables for constrained flows of soliton equations has been studied
(see, for example, [4, 10–14]). In recent years binary constrained flows of soliton hierarchies
have attracted attention (see, for example, [15–22]). However, the separation of variables
for binary constrained flows has not been studied. The degree of freedom for high-order

binary constrained flows admitting 2× 2 Lax matricesM =
(
A(λ) B(λ)

C(λ) −A(λ)

)
is a natural number

2N + k0. Via the Lax matrixM, N + k0 pairs of canonical separated variablesu1, . . . , uN+k0

can be introduced by the set of zeros ofB(λ) andvk = A(uk), andN + k0 separated equations
can be found from the generation function of integrals of motions. In previous papers [23, 24]
we presented a method with two different ways of determiningN additional pairs of canonical
separated variables andN additional separated equations for first binary constrained flows
with 2N degrees of freedom. The main idea in [23, 24] is to construct two functionsB̃(λ)

andÃ(λ) and defineuN+1, . . . , u2N by the set of zeros of̃B(λ) andvN+k = Ã(uN+k). The
ways of constructingB̃(λ) and Ã(λ) in [23, 24] are somewhat different. Here we propose
a completely different method from that in [23, 24] to introduce the additionalN separated
variables andN separated equations for high-order binary constrained flows with 2N + k0

degrees of freedom. It is observed that the introduction ofvk has some link with integrals of
motion and should lead to the separated equations. We find that there areN integrals of motion
PN+k0+1, . . . , P2N+k0 among the 2N+k0 integrals of motion for the high-order binary constrained
flows which commute withA(λ) andB(λ). This observation and property stimulate us to use
the additional integrals of motion directly to define both theN pairs of additional separated
variables andN separated equations byvN+k0+j = PN+k0+j , j = 1, . . . , N . Then we can find
the conjugated variablesuN+k0+j , 1, . . . , N, commuting withA(λ) andB(λ). In contrast to
the method in [23, 24], this method is easier to apply to the high-order binary constrained
flows.

We will also present the separation of variables of soliton equations. The first step is
to factorize(1 + 1)-dimensional soliton equations into two commutingx- andt-FDIHSs via
high-order binary constrained flows, namely thex andt dependences of the soliton equations
are separated by thex- and t-FDIHSs obtained from thex and t binary constrained flows.
The second step is to produce separation of variables for thex- and t-FDIHDs. Finally,
combining the factorization of soliton equations with the Jacobi inversion problems forx-
andt-FDIHSs enables us to establish the Jacobi inversion problems for soliton equations. If
the Jacobi inversion problem can be solved by the Jacobi inversion technique [7], one can
obtain the solution in terms of the Riemann-theta function for soliton equations. We illustrate
the method by KdV, AKNS and Kaup–Newell (KN) hierarchies. The paper is organized as
follows.

In section 2, we first recall the high-order binary constrained flows and factorization of the
KdV hierarchy. Then we propose a method for introducing theN pairs of additional separated
variables. We illustrate the method by both first binary constrained flow and second binary
constrained flow. Finally, we present the separation of variables for the KdV hierarchy. In
sections 3 and 4, the method is applied to the AKNS hierarchy and KN hierarchy, respectively.
In fact, this method can be applied to all high-order binary constrained flows and other soliton
hierarchies admitting 2× 2 Lax pairs.

2. Separation of variables for the KdV equations

We first recall the high-order binary constrained flows of the KdV hierarchy.
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2.1. High-order binary constrained flows of the KdV hierarchy

Consider the Schrödinger equation [25]

φxx + (λ + u) φ = 0

which is equivalent to the following spectral problem:

φx = U(u, λ) φ U(u, λ) =
(

0 1
−λ− u 0

)
φ =

(
φ1

φ2

)
. (2.1)

Take the time evolution law ofφ as

φtn = V (n)(u, λ) φ (2.2)

where

V (n)(u, λ) =
n+1∑
i=0

(
ai bi

ci −ai

)
λn+1−i +

(
0 0
bn+2 0

)
a0 = b0 = 0 c0 = −1 a1 = 0 b1 = 1

bk+1 = Lbk = − 1
2L

k−1u ak = − 1
2bk,x

ck = − 1
2bk,xx − bk+1− bku k = 1, 2, . . .

L = − 1
4∂

2 − u + 1
2∂
−1ux ∂ = ∂x ∂−1∂ = ∂∂−1 = 1.

(2.3)

The compatibility condition of (2.1) and (2.2) gives rise to thenth KdV equation which
can be written as an infinite-dimensional Hamiltonian system [25]

utn = −2bn+2,x = ∂Lnu = ∂ δHn
δu

(2.4)

with the HamiltonianHn = 4bn+3/(2n + 3) andδHn/δu = −2bn+2.
Forn = 1 we have

φt1 = V (1)(u, λ) φ V (1) =
(

1
4ux λ− 1

2u

−λ2 − 1
2uλ + 1

4uxx + 1
2u

2 − 1
4ux

)
(2.5)

and equation (2.4) forn = 1 is the well known KdV equation

ut1 = − 1
4(uxxx + 6uux). (2.6)

The adjoint spectral problem reads

ψx = −UT (u, λ)ψ ψ =
(
ψ1

ψ2

)
. (2.7)

By means of the formula in [26], we have

δλ

δu
= Tr

[(
φ1ψ1 φ1ψ2

φ2ψ1 φ2ψ2

)
∂U(u, λ)

∂u

]
= −ψ2φ1.

According to [15–22], the high-order binaryx-constrained flows of the KdV hierarchy (2.4)
consist of the equations obtained from the spectral problem (2.1) and the adjoint spectral
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problem (2.7) forN distinct real numbersλj and the restriction of the variational derivatives
for the conserved quantitiesHk0 (for any fixedk0) andλj :

81,x = 82 82,x = −381− u81 (2.8a)

91,x = 392 + u92 92,x = −91 (2.8b)

δHk0

δu
−

N∑
j=1

δλj

δu
= −2bk0+2 + 〈92,81〉 = 0. (2.8c)

Hereafter we denote the inner product inRN by 〈· , ·〉 and

8i = (φi1, . . . , φiN )T 9i = (ψi1, . . . , ψiN)T i = 1, 2

3 = diag(λ1, . . . , λN).

The binarytn-constrained flows of the KdV hierarchy (2.4) are defined by the replicas of
(2.2) and its adjoint system forN distinct real numberλj ,(
φ1j

φ2j

)
tn

= V (n)(u, λj )
(
φ1j

φ2j

) (
ψ1j

ψ2j

)
tn

= −(V (n)(u, λj ))T
(
ψ1j

ψ2j

)
j = 1, . . . , N (2.9a)

as well as thenth KdV equation itself (2.4) in the case of the higher-order constraint fork0 > 1

utn = −2bn+2,x . (2.9b)

2.1.1. Fork0 = 0 we have

b2 = − 1
2u = 1

2〈92,81〉 i.e. u = −〈92,81〉. (2.10)

By substituting (2.10), (2.8a) and (2.8b) becomes a finite-dimensional Hamiltonian system
(FDHS) [18]

81x = ∂F1

∂91
82x = ∂F1

∂92
91x = − ∂F1

∂81
92x = − ∂F1

∂82

F1 = 〈91,82〉 − 〈392,81〉 + 1
2〈92,81〉2.

(2.11)

Under the constraint (2.10) and thex-FDHS (2.11), the binaryt1-constrained flow obtained
from (2.9a) with V (1) given by (2.5) can also be written as at1-FDHS

81,t1 =
∂F2

∂91
82,t1 =

∂F2

∂92
91,t1 = −

∂F2

∂81
92,t1 = −

∂F2

∂82

F2 = −〈3292,81〉 + 〈391,82〉 + 1
2〈92,81〉〈392,81〉

+1
2〈92,81〉〈91,82〉 + 1

8(〈92,82〉 − 〈91,81〉)2.
(2.12)

The Lax representation for thex-constrained flow (2.8) and thetn-constrained flow (2.9)
can be deduced from the adjoint representation of (2.1) and (2.2) by using the method in
[27, 28]

Mx = [Ũ ,M] Mtn = [Ṽ (n),M] (2.13)

whereŨ andṼ (n) are obtained fromU andV (n) under the system (2.8), and the Lax matrix
M is of the form

M =
(
A(λ) B(λ)

C(λ) −A(λ)
)
.
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The Lax matrixM for x-FDHS (2.11) andt1-FDHS (2.12) is given by

A(λ) = 1

4

N∑
j=1

ψ1jφ1j − ψ2jφ2j

λ− λj B(λ) = 1 +
1

2

N∑
j=1

ψ2jφ1j

λ− λj

C(λ) = −λ + 1
2〈92,81〉 + 1

2

N∑
j=1

ψ1jφ2j

λ− λj .
(2.14)

The generating function of integrals of motion for (2.11) and (2.12) yields

A2(λ) +B(λ)C(λ) ≡ P(λ) = −λ +
N∑
j=1

[
Pj

λ− λj +
P 2
N+j

(λ− λj )2
]

(2.15)

whereP1, . . . , P2N are independent integrals of motion for the FDHSs (2.11) and (2.12)

Pj = 1
2ψ1jφ2j +

(− 1
2λj + 1

4〈92,81〉
)
ψ2jφ1j

+
1

8

∑
k 6=j

1

λj − λk [(ψ1jφ1j − ψ2jφ2j )(ψ1kφ1k − ψ2kφ2k) + 4ψ1jφ2jψ2kφ1k]

(2.16a)

PN+j = 1
4(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N. (2.16b)

It is easy to verify that

F1 = 2
N∑
j=1

Pj F2 = 2
N∑
j=1

(λjPj + P 2
N+j ). (2.17)

With respect to the standard Poisson bracket

{f, g} =
N∑
j=1

(
∂f

∂ψ1j

∂g

∂φ1j
+
∂f

∂ψ2j

∂g

∂φ2j
− ∂f

∂φ1j

∂g

∂ψ1j
− ∂f

∂φ2j

∂g

∂ψ2j

)
(2.18)

by calculating formulae like (2.31), it is easy to verify that

{A2(λ) +B(λ)C(λ),A2(µ) +B(µ)C(µ)} = 0 (2.19)

which implies thatP1, . . . , P2N are in involution, equations (2.11) and (2.12) are FDIHSs
and commute with each other. The construction of (2.11) and (2.12) ensures that if
(91, 92,81,82) satisfies the FDIHSs (2.11) and (2.12) simultaneously, thenu defined by
(2.10) solves the KdV equation (2.6).

Set

A2(λ) +B(λ)C(λ) = λ
∞∑
k=0

F̃kλ
−k (2.20)

whereF̃k, k = 1, 2, . . . , are also integrals of motion for both thex-FDHSs (2.11) and the
tn-binary constrained flows (2.9). Comparing (2.20) with (2.15), one obtains

F̃0 = −1 F̃1 = 0 F̃k =
N∑
j=1

[
λk−2
j Pj + (k − 2)λk−3

j P 2
N+j

]
k = 2, 3, . . . .

(2.21)
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By employing the method in [28, 29], thetn-FDIHS obtained from thetn-binary constrained
flow (2.9) is found to be of the form

81,tn =
∂Fn+1

∂91
82,tn =

∂Fn+1

∂92
91,tn = −

∂Fn+1

∂81
92,tn = −

∂Fn+1

∂82
(2.22a)

Fn+1 =
n∑

m=0

( 1
2)
m−1 αm

m + 1

∑
l1+···+lm+1=n+2

F̃l1 . . . F̃lm+1 (2.22b)

wherel1 > 1, . . . , lm+1 > 1, α0 = 1, α1 = 1
2, α2 = 3

2, and [28, 29]

αm = 2αm−1 +
m−2∑
l=1

αlαm−l−1− 1
2

m−1∑
l=1

αlαm−l m > 3. (2.22c)

Thenth KdV equation (2.4) is factorized by thex-FDIHS (2.11) and thetn-FDIHS (2.22).

2.1.2. Fork0 = 1 one obtains

b3 = 1
8(uxx + 3u2) = 1

2〈92,81〉. (2.23)

By introducingq = u, p = 1
4ux, equations (2.8a), (2.8b) and (2.23) can be written as a

x-FDHS

8ix = ∂F1

∂9i
9ix = − ∂F1

∂8i

i = 1, 2 qx = ∂F1

∂p
px = −∂F1

∂q

F1 = −〈392,81〉 + 〈91,82〉 − q〈92,81〉 + 2p2 + 1
4q

3.

(2.24)

Under the constraint (2.23),V (1) becomes

Ṽ (1) =
(

p λ− 1
2q

−λ2 − 1
2qλ + 〈92,81〉 − 1

4q
2 −p

)
. (2.25)

Under the constraint (2.23) and thex-FDHS (2.24), the binaryt1-constrained flow consists of
(2.9a) with V (1) replaced byṼ (1) and (2.9b) given by (2.6) can also be written as at1-FDHS

8it1 =
∂F2

∂9i
9it1 = −

∂F2

∂8i

i = 1, 2 qt1 =
∂F2

∂p
pt1 = −

∂F2

∂q

F2 = −〈3292,81〉 + 〈391,82〉 − 1
2q〈392,81〉 − 1

2q〈91,82〉
+p〈91,81〉 − p〈92,82〉 + 1

2〈92,81〉2 − 1
4q

2〈92,81〉.
(2.26)

The Lax representations for thex-FDHS (2.24) and thet1-FDHS (2.26), which can be
deduced from the adjoint representation of (2.1) and (2.2), are given by (2.13) withṼ (1) defined
by (2.25) andŨ obtained fromU by usingq instead ofu as well asM given by

A(λ) = p +
1

4

N∑
j=1

ψ1jφ1j − ψ2jφ2j

λ− λj B(λ) = λ− 1
2q + 1

2

N∑
j=1

ψ2jφ1j

λ− λj

C(λ) = −λ2 − 1
2qλ + 1

2〈92,81〉 − 1
4q

2 + 1
2

N∑
j=1

ψ1jφ2j

λ− λj .
(2.27)

The generating function of integrals of motion for (2.24) and (2.26) yields

A2(λ) +B(λ)C(λ) ≡ P(λ) = −λ3 + P0 +
N∑
j=1

[
Pj

λ− λj +
P 2
N+j

(λ− λj )2
]

(2.28)
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whereP0, . . . , P2N are independent integrals of motion for the FDHSs (2.24) and (2.26) and
P0 = 1

2F1,

Pj = − 1
2λ

2
jψ2jφ1j + 1

2λjψ1jφ2j − 1
4λjqψ2jφ1j − 1

4qψ1jφ2j + 1
2p(ψ1jφ1j − ψ2jφ2j )

+1
4

(〈92,81〉 − 1
2q

2
)
ψ2jφ1j + 1

8

∑
k 6=j

1

λj − λk
×[(ψ1jφ1j − ψ2jφ2j )(ψ1kφ1k − ψ2kφ2k) + 4ψ1jφ2jψ2kφ1k] (2.29a)

PN+j = 1
4(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N. (2.29b)

We have

F1 = 2P0 F2 = 2
N∑
j=1

Pj . (2.30)

Similarly, it can be shown that (2.24) and (2.26) are FDIHSs and commute with each
other. The KdV equation (2.6) is factorized byx-FDIHS (2.24) andt1-FDIHS (2.26). If
(91, 92, p,81,82, q) satisfies the FDIHSs (2.24) and (2.26) simultaneously, thenu = q

solves the KdV equation (2.6).

2.2. The separation of variables for the KdV equations

2.2.1. For the casek0 = 0 we first consider the separation of variables for FDIHSs (2.11)
and (2.12). With respect to the standard Poisson bracket (2.18), it is found that forA(λ) and
B(λ) given by (2.14) we have

{A(λ),A(µ)} = {B(λ), B(µ)} = 0 {A(λ), B(µ)} = 1

2(λ− µ) [B(µ)− B(λ)]. (2.31)

An effective way to introduce the separated variablesvk, uk and to obtain the separated
equations is to use the Lax matrixM and the generating function of integrals of motion.
The commutator relations (2.31) and equation (2.15) enable us to define the firstN pairs of
the canonical variablesu1, . . . , uN by the set of zeros ofB(λ) [1–3]

B(λ) = 1 +
1

2

N∑
j=1

ψ2jφ1j

λ− λj =
R(λ)

K(λ)
(2.32a)

where

R(λ) =
N∏
k=1

(λ− uk) K(λ) =
N∏
k=1

(λ− λk)

andv1, . . . , vN by

vk = 2A(uk) k = 1, . . . , N. (2.32b)

The commutator relations (2.31) guarantee thatu1, . . . , uN andv1, . . . , vN satisfy the canonical
conditions (1.1) [1–3]. Then substitutinguk into (2.15) gives rise to the firstN separated
equations

vk = 2A(uk) = 2
√
P(uk) = 2

√√√√−uk +
N∑
j=1

[
Pj

uk − λj +
P 2
N+j

(uk − λj )2
]

k = 1, . . . , N.

(2.33)
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The FDIHSs (2.11) and (2.12) have 2N degrees of freedom, we need to introduce the
otherN pairs of canonical variablesvk, uk, k = N + 1, . . . ,2N . Notice thatPN+j given by
(2.16b) are integrals of motion for the FDIHSs (2.11) and (2.12), and satisfy

{B(λ), PN+j } = {A(λ), PN+j } = 0. (2.34)

Thus we may define

vN+j = 2PN+j = 1
2(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N (2.35a)

which also give rise to the separated equations. It is easy to see that if we take

uN+j = ln
φ1j

ψ2j
j = 1, . . . , N (2.35b)

then

{vN+j , uN+k} = δjk {vN+j , vN+k} = {uN+j , uN+k} = 0 j, k = 1, . . . , N (2.36)

{B(λ), uN+j } = {A(λ), uN+j } = {B(λ), vN+j } = {A(λ), vN+j } = 0. (2.37)

We have the following proposition.

Proposition 1. Assume thatλj , φij , ψij ∈ R, i = 1, 2, j = 1, . . . , N . Introduce the
separated variablesu1, . . . , u2N and v1, . . . , v2N by (2.32) and (2.35). Ifu1, . . . , uN, are
single zeros ofB(λ), thenv1, . . . , v2N andu1, . . . , u2N are canonically conjugated, i.e. they
satisfy (1.1).

Proof. By following the similar method in [1–6, 23, 24], it is easy to show thatv1, . . . , vN
and u1, . . . , uN satisfy (1.1). Notice thatB ′(uk) 6= 0. Hereafter the prime denotes the
differentiation with respect toλ. It follows from (2.36) and (2.37) that

0= {uN+k, B(ul)} = B ′(ul){uN+k, ul} + {uN+k, B(µ)}|µ=ul = B ′(ul){uN+k, ul}
{vk, uN+l} = 2{A(uk), uN+l}

= 2A′(uk){uk, uN+l} + {A(λ), uN+l}|λ=uk = 2A′(uk){uk, uN+l}
(2.38)

which leads to{uN+k, ul} = {uN+k, vl} = 0. Similarly, we can show that{vN+k, ul} =
{vN+k, vl} = 0. These together with (2.36) complete the proof. �

It follows from (2.32a) and (2.35b) that

u = −〈92,81〉 = 2
N∑
j=1

(uj − λj )

ψ2jφ1j = 2
R(λj )

K ′(λj )
φ1j

ψ2j
= euN+j j = 1, . . . , N

(2.39)

or

φ1j =
√

2R(λj ) euN+j

K ′(λj )
ψ2j =

√
2R(λj ) e−uN+j

K ′(λj )
j = 1, . . . , N. (2.40)

The separated equations are given by (2.33) and (2.35a). Replacingvk by the partial
derivative∂S/∂uk of the generating functionS of the canonical transformation and interpreting
Pi as integration constants, equations (2.33) and (2.35a) give rise to the Hamilton–Jacobi



High-order binary constrained flows 629

equations which are completely separable and may be integrated to give the completely
separated solution

S(u1, . . . , u2N) =
N∑
k=1

[∫ uk

2
√
P(λ) dλ + 2PN+kuN+k

]
. (2.41)

The linearizing coordinates are then

Qi = ∂S

∂Pi
=

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ i = 1, . . . , N (2.42a)

QN+i = ∂S

∂PN+i
= 2

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + 2uN+i i = 1, . . . , N. (2.42b)

By using (2.17), the linear flow induced by (2.11) is then given by

Qi = γi + x
∂F1

∂Pi
= γi + 2x QN+i = 2γN+i + x

∂F1

∂PN+i
= 2γN+i i = 1, . . . , N.

(2.43)

Hereafterγi, i = 1, . . . ,2N, are arbitrary constants. Combining equation (2.42) with
equation (2.43) leads to the Jacobi inversion problem for the FDIHS (2.11)

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2x i = 1, . . . , N (2.44a)

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i i = 1, . . . , N. (2.44b)

If, by using the Jacobi inversion technique [7],φ1j , ψ2j , 〈92,81〉 given by (2.39) and (2.40)
can be obtained from (2.44), thenφ2j , ψ1j can be found from the first and the last equation in
(2.11) by an algebraic calculation, respectively. The(φ1j , φ2j , ψ1j , ψ2j ) provides the solution
to the FDIHS (2.11).

By using (2.17), the linear flow induced by (2.12) is then given by

Qi = γ̄i +
∂F2

∂Pi
t1 = γ̄i + 2λit1

QN+i = 2γ̄N+i +
∂F2

∂PN+i
t1 = 2γ̄N+i + 4PN+i t1 i = 1, . . . , N

(2.45)

whereγ̄i are arbitrary constants. Combining equation (2.42) with equation (2.45) leads to the
Jacobi inversion problem for the FDIHS (2.12)

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γ̄i + 2λit1 i = 1, . . . , N (2.46a)

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γ̄N+i + 2PN+i t1 i = 1, . . . , N. (2.46b)

Finally, since the KdV equation (2.6) is factorized by the FDIHSs (2.11) and (2.12),
combining equation (2.44) with equation (2.46) gives rise to the Jacobi inversion problem for
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the KdV equation (2.6)
N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2x + 2λit1 i = 1, . . . , N (2.47a)

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i + 2PN+i t1 i = 1, . . . , N. (2.47b)

If, by using the Jacobi inversion technique [7],u is given by (2.39) can be found in terms
of Riemann theta functions by solving (2.47), thenu provides the solution of the KdV
equation (2.6).

In general, since thenth KdV equation (2.4) is factorized by thex-FDIHS (2.11) and the
tn-FDIHS (2.22), the above procedure can be applied to find the Jacobi inversion problem for
thenth KdV equation (2.4). We have the following proposition.

Proposition 2. The Jacobi inversion problem for thenth KdV equation (2.4) is given by
N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2x

+tn
n∑

m=0

( 1
2)
m−1αm

∑
l1+···+lm+1=n+2

λ
lm+1−2
i F̃l1 . . . F̃lm i = 1, . . . , N

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i + tn
n∑

m=0

( 1
2)
m−2αm

×
∑

l1+···+lm+1=n+2

(lm+1− 2)λlm+1−3
i PN+i F̃l1 . . . F̃lm i = 1, . . . , N

wherel1 > 1, . . . , lm+1 > 1 andF̃l1, . . . F̃lm , are given by (2.21).

2.2.2. For the casek0 = 1 we now consider the separation of variables for FDIHSs (2.24)
and (2.26). With respect to the standard Poisson bracket, it is found thatA(λ) andB(λ) given
by (2.27) also satisfy the commutator relation (2.31). In the same way, the firstN + 1 pairs of
the canonical variablesu1, . . . , uN+1 can be introduced by the set of zeros ofB(λ)

B(λ) = λ− 1
2q + 1

2

N∑
j=1

ψ2jφ1j

λ− λj =
R(λ)

K(λ)
(2.48a)

where

R(λ) =
N+1∏
k=1

(λ− uk) K(λ) =
N∏
k=1

(λ− λk)

andv1, . . . , vN+1 by

vk = 2A(uk) k = 1, . . . , N + 1. (2.48b)

Then substitutinguk into (2.28) gives rise to the firstN + 1 separated equations

vk = 2A(uk) = 2
√
P(uk) = 2

√√√√−u3
k + P0 +

N∑
j=1

[
Pj

uk − λj +
P 2
N+j

(uk − λj )2
]

k = 1, . . . , N + 1. (2.49)
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The additionalN pairs of canonical variables can also be defined in the same way

vN+1+j = 2PN+j = 1
2(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N (2.50a)

uN+1+j = ln
φ1j

ψ2j
j = 1, . . . , N. (2.50b)

In the same way we can show the following proposition.

Proposition 3. Assume thatλj , φij , ψij ∈ R, i = 1, 2, j = 1, . . . , N . Introduce the
separated variablesu1, . . . , u2N+1 andv1, . . . , v2N+1 by (2.48) and (2.50). Ifu1, . . . , uN+1,

are single zeros ofB(λ), thenv1, . . . , v2N+1 andu1, . . . , u2N+1 are canonically conjugated,
i.e. they satisfy (1.1).

It follows from (2.48) and (2.50) that

u = q = 2
N+1∑
j=1

uj − 2
N∑
j=1

λj (2.51a)

φ1j =
√

2R(λj ) euN+1+j

K ′(λj )
ψ2j =

√
2R(λj ) e−uN+1+j

K ′(λj )
j = 1, . . . , N. (2.51b)

The separated equations (2.49) and (2.50a) may be integrated to give the completely
separated solution for the generating functionS of the canonical transformation

S(u1, . . . , u2N+1) =
N+1∑
k=1

∫ uk

2
√
P(λ) dλ + 2

N∑
k=1

PN+kuN+1+k (2.52)

whereP(λ) is given by (2.28).
In exactly the same way, one obtains the Jacobi inversion problem for the FDIHS (2.24)

N+1∑
k=1

∫ uk 1√
P(λ)

dλ = γ0 + 2x (2.53a)

N+1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi i = 1, . . . , N (2.53b)

N+1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i i = 1, . . . , N (2.53c)

the Jacobi inversion problem for the FDIHS (2.26)

N+1∑
k=1

∫ uk 1√
P(λ)

dλ = γ0 (2.54a)

N+1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2t1 i = 1, . . . , N (2.54b)

N+1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i i = 1, . . . , N. (2.54c)

Finally, we have the following proposition.
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Proposition 4. The Jacobi inversion problem for the KdV equation (2.6)

N+1∑
k=1

∫ uk 1√
P(λ)

dλ = γ0 + 2x (2.55a)

N+1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2t1 i = 1, . . . , N (2.55b)

N+1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i i = 1, . . . , N. (2.55c)

If, by using the Jacobi inversion technique [7],u given by (2.51a) can be found in
terms of Riemann theta functions by solving (2.55), thenu provides the solution of the KdV
equation (2.6).

In general, since thenth KdV equation (2.4) is factorized by thex-FDIHS (2.24) and the
tn-FDIHS obtained from (2.9) under (2.24), the above procedure can be applied to find the
Jacobi inversion problem for thenth KdV equation (2.4).

2.2.3. The method can be applied to all high-order binary constrained flows (2.8) and (2.9)
as well as the whole KdV hierarchy. For any fixedk0, by introducing the so-called Jacobi–
Ostrogradsky coordinates, the high-order binaryx-constrained flow (2.8) can be transformed
into a x-FDIHS with a degree of freedom 2N + k0. Under thex-FDIHS, the binarytn-
constrained flow (2.9) can also be transformed into atn-FDIHS. The Lax representation for the
x- andtn-FDIHS can be deduced from the adjoint representation of (2.1) and (2.2) by using
the method in [27, 28]. By means of the Lax matrix we can introduce the firstN +k0 canonical
variablesu1, . . . , uN+k0 by the set of zeros ofB(λ) andvk = 2A(uk), k = 1, . . . , N +k0. Then
the additionalN canonical separated variables can be defined by

vN+k0+j = 2PN+j = 1
2(ψ1jφ1j +ψ2jφ2j ) uN+k0+j = ln

φ1j

ψ2j
j = 1, . . . , N.

Finally, since thenth KdV equation (2.4) is factorized by thex-FDIHS and thetn-FDIHS, in
exactly the same way we can obtain the Jacobi inversion problem for (2.4). The above scheme
can be applied to all soliton equations admitting 2× 2 Lax pairs.

3. The separation of variables for the AKNS equations

3.1. Binary constrained flows of the AKNS hierarchy

For the AKNS spectral problem [30]

φx = U(u, λ) φ U(u, λ) =
( −λ q

r λ

)
φ =

(
φ1

φ2

)
u =

(
q

r

)
. (3.1)

Take

φtn = V (n)(u, λ) φ V (n)(u, λ) =
n∑
i=0

(
ai bi

ci −ai

)
λn−i (3.2)
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where

a0 = −1 b0 = c0 = 0 a1 = 0 b1 = q c1 = r a2 = 1
2qr, . . .(

ck+1

bk+1

)
= L

(
ck

bk

)
ak = ∂−1(qck − rbk) k = 1, 2, . . .

L = 1
2

(
∂ − 2r∂−1q 2r∂−1r

−2q∂−1q −∂ + 2q∂−1r

)
.

(3.3)

The AKNS hierarchy associated with (3.1) and (3.2) reads [30]

utn =
(
q

r

)
tn

= JLn
(
r

q

)
= J δHn+1

δu
n = 1, 2, . . . (3.4)

J =
(

0 −2
2 0

)
Hn = 2an+1

n + 1

(
cn

bn

)
= δHn

δu
n = 1, 2, . . . .

Forn = 2 we have

φt2 = V (2)(u, λ) φ V (2) =
(
−λ2 + 1

2qr qλ− 1
2qx

rλ + 1
2rx λ2 − 1

2qr

)
(3.5)

and the AKNS equation (3.4) forn = 2 reads

qt2 = − 1
2qxx + q2r rt2 = 1

2rxx − r2q. (3.6)

The adjoint AKNS spectral problem is of the same form as equation (2.7). We have

δλ

δu
=
(
δλ/δq

δλ/δr

)
= Tr

[(
φ1ψ1 φ1ψ2

φ2ψ1 φ2ψ2

)
∂U(u, λ)

∂u

]
=
(
ψ1φ2

ψ2φ1

)
(3.7)

which should be read componentwise [26].
The binaryx-constrained flows of the AKNS hierarchy (3.4) are defined by [15, 17, 21]

81,x = −381 + q82 82,x = r81 +382 (3.8a)

91,x = 391− r92 92,x = −q91−392 (3.8b)

δHk0+1

δu
−

N∑
j=1

δλj

δu
=
(
ck0+1

bk0+1

)
− β

( 〈91,82〉
〈92,81〉

)
= 0. (3.8c)

3.1.1. Fork0 = 0, β = 1 we have(
c1

b1

)
=
(
r

q

)
=
( 〈91,82〉
〈92,81〉

)
. (3.9)

By substituting (3.9) into (3.8a) and (3.8b), one obtains anx-FDHS [15, 17]

81x = ∂F1

∂91
82x = ∂F1

∂92
91x = − ∂F1

∂81
92x = − ∂F1

∂82
(3.10)

F1 = 〈392,82〉 − 〈391,81〉 + 〈92,81〉〈91,82〉.
Under the constraint (3.9) and the FDHS (3.10), the binaryt2-constrained flow obtained

from (3.2) withV (2) given by (3.5) and its adjoint equation forN distinct real numberλj can
also be written as at2-FDHS

81,t2 =
∂F2

∂91
82,t2 =

∂F2

∂92
91,t2 = −

∂F2

∂81
92,t2 = −

∂F2

∂82

F2 = 〈3292,82〉 − 〈3291,81〉 + 〈92,81〉〈391,82〉
+〈392,81〉〈91,82〉 − 1

2(〈92,82〉 − 〈91,81〉)〈92,81〉〈91,82〉.
(3.11)
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The Lax representation for the FDHSs (3.10) and (3.11) which can also be deduced from
the adjoint representation of (3.1) and (3.2) are presented by (2.13) with the entries of the Lax
matrixM given by [21]

A(λ) = −1 +
1

2

N∑
j=1

ψ1jφ1j − ψ2jφ2j

λ− λj (3.12a)

B(λ) =
N∑
j=1

ψ2jφ1j

λ− λj C(λ) =
N∑
j=1

ψ1jφ2j

λ− λj . (3.12b)

A straightforward calculation yields

A2(λ) +B(λ)C(λ) ≡ P(λ) = 1 +
N∑
j=1

[
Pj

λ− λj +
P 2
N+j

(λ− λj )2
]

(3.13)

whereP1, . . . , P2N are independent integrals of motion for the FDHSs (3.10) and (3.11)

Pj = ψ2jφ2j − ψ1jφ1j +
1

2

∑
k 6=j

1

λj − λk
×[(ψ1jφ1j − ψ2jφ2j )(ψ1kφ1k − ψ2kφ2k) + 4ψ1jφ2jψ2kφ1k] (3.14a)

PN+j = 1
2(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N. (3.14b)

It is easy to verify that

F1 =
N∑
j=1

(
λjPj + P 2

N+j

)− 1
4

( N∑
j=1

Pj

)2

(3.15a)

F2 =
N∑
j=1

(
λ2
jPj + 2λjP

2
N+j

)− 1
2

( N∑
j=1

Pj

) N∑
j=1

(
λjPj + P 2

N+j

)
+ 1

8

( N∑
j=1

Pj

)3

. (3.15b)

Similarly, it is easy to show thatP1, . . . , P2N are in involution, equations (3.10) and (3.11)
are FDIHSs. The AKNS equation (3.6) is factorized by thex-FDIHS (3.10) and thet2-FDIHS
(3.11), namely, if(91, 92,81,82) satisfies the FDIHSs (3.10) and (3.11) simultaneously,
then(q, r) given by (3.9) solves the AKNS equation (3.6). In general, the factorization of the
nth AKNS equations (3.4) will be presented at the end of section 3.2.

3.1.2. Fork0 = 1, β = 1
2, equation (3.8c) yields

rx = 〈91,82〉 qx = −〈92,81〉. (3.16)

Equations (3.8a), (3.8b) and (3.16) can be written as ax-FDIHS

8ix = ∂F1

∂91
rx = ∂F1

∂q
9ix = − ∂F1

∂8i

qx = −∂F1

∂r
i = 1, 2

F1 = 〈392,82〉 − 〈391,81〉 + r〈92,81〉 + q〈91,82〉.
(3.17)

Under the constraint (3.16) and the FDIHS (3.17),V (2) becomes

Ṽ (2) =
(
−λ2 + 1

2qr qλ + 1
2〈92,81〉

rλ + 1
2〈91,82〉 λ2 − 1

2qr

)
. (3.18)
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Then under the constraint (3.16) and the FDIHS (3.17), the binaryt2-constrained flow consisting
of replicas (3.5) and its adjoint system forN distinct real numbersλj as well as (3.6) can also
be written as at2-FDIHS

8i,t2 =
∂F2

∂9i
rt2 =

∂F2

∂q
9i,t2 = −

∂F2

∂8i

qt2 = −
∂F2

∂r
i = 1, 2

F2 = 〈3292,82〉 − 〈3291,81〉 + q〈391,82〉 + r〈392,81〉
− 1

2qr(〈92,82〉 − 〈91,81〉) + 1
2〈92,81〉〈91,82〉 − 1

2q
2r2.

(3.19)

The Lax matrixM for FDIHS (3.17) and (3.19) is given by

A(λ) = −λ +
1

4

N∑
j=1

ψ1jφ1j − ψ2jφ2j

λ− λj (3.20a)

B(λ) = q +
1

2

N∑
j=1

ψ2jφ1j

λ− λj C(λ) = r +
1

2

N∑
j=1

ψ1jφ2j

λ− λj . (3.20b)

A straightforward calculation yields

A2(λ) +B(λ)C(λ) ≡ P(λ) = λ2 + P0 +
N∑
j=1

[
Pj

λ− λj +
P 2
N+j

(λ− λj )2
]

(3.21)

whereP0, . . . , P2N are independent integrals of motion in involution for the FDIHSs (3.17)
and (3.19)

P0 = 1
2(〈92,82〉 − 〈91,81〉) + qr

Pj = 1
2[λjψ2jφ2j − λjψ1jφ1j + qψ1jφ2j + rψ2jφ1j ]

+
1

8

∑
k 6=j

1

λj − λk [(ψ1jφ1j − ψ2jφ2j )(ψ1kφ1k − ψ2kφ2k) + 4ψ1jφ2jψ2kφ1k]

PN+j = 1
4(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N.

It is easy to verify that

F1 = 2
N∑
j=1

Pj F2 = 2
N∑
j=1

(
λjPj + P 2

N+j

)− 1
2P

2
0 . (3.22)

It is easy to show thatP1, . . . , P2N are in involution, equations (3.17) and (3.18) are
FDIHSs and commute with each other. The AKNS equation (3.6) is factorized by thex-
FDIHS (3.17) and thet2-FDIHS (3.19), namely, if(91, 92, q,81,82, r) satisfies the FDIHSs
(3.17) and (3.19) simultaneously, then(q, r) solves the AKNS equation (3.6).

3.2. The separation of variables for the AKNS equations

3.2.1. For k0 = 0 case we present the Jacobi inversion problem for (3.10) and (3.11) as
well as for (3.6). With respect to the standard Poisson bracket,A(λ) andB(λ) given by (3.12)
satisfy

{A(λ),A(µ)} = {B(λ), B(µ)} = 0 {A(λ), B(µ)} = 1

λ− µ [B(µ)− B(λ)]. (3.23)
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In contrast withB(λ) for the constrained KdV flows,B(λ) given by (3.12b) has onlyN−1
zeros, one has to define the canonical variablesuk, vk, k = 1, . . . , N, in a slightly different
way:

B(λ) =
N∑
j=1

ψ2jφ1j

λ− λj = euN
R(λ)

K(λ)
R(λ) =

N−1∏
k=1

(λ− uk) K(λ) =
N∏
k=1

(λ− λk)

(3.24a)

vk = A(uk) k = 1, . . . , N − 1 vN = 1
2(〈91,81〉 − 〈92,82〉). (3.24b)

Equation (3.24a) yields

uN = ln〈92,81〉. (3.24c)

Then it is easy to verify that

{uN,B(µ)} = {vN,A(µ)} = 0 {vN, uN } = 1 (3.25a)

{uN,A(µ)} = − B(µ)

〈92,81〉 {vN, B(µ)} = B(µ). (3.25b)

The commutator relations (3.23) and (3.25) guarantee thatu1, . . . , uN, v1, . . . , vN satisfy the
canonical conditions (1.1). Similarly, we define

vN+j = PN+j uN+j = ln
φ1j

ψ2j
j = 1, . . . , N. (3.26)

In the same way we can show the following proposition.

Proposition 5. Assume thatλj , φij , ψij ∈ R, i = 1, 2, j = 1, . . . , N . Introduce the separated
variablesu1, . . . , u2N andv1, . . . , v2N by (3.24) and (3.26). Ifu1, . . . , uN−1, are single zeros
ofB(λ), thenv1, . . . , v2N andu1, . . . , u2N are canonically conjugated, i.e. they satisfy (1.1).

It follows from (3.24) that

q = euN

ψ2jφ1j = euN
R(λj )

K ′(λj )
φ1j

ψ2j
= euN+j j = 1, . . . , N

(3.27)

or

φ1j =
√

euN+uN+j R(λj )

K ′(λj )
ψ2j =

√
euN−uN+j R(λj )

K ′(λj )
j = 1, . . . , N. (3.28)

It is easy to see from (3.13) that

vN = 1
2(〈91,81〉 − 〈92,82〉) = − 1

2

N∑
i=1

Pi. (3.29)

Then the separated equations obtained by substitutinguk into (3.13) and using (3.24) and the
separated equations (3.26) and (3.29) may be integrated to give the generating function of the
canonical transformation

S(u1, . . . , u2N) =
N−1∑
k=1

∫ uk √
P(λ) dλ− 1

2

N∑
i=1

PiuN +
N∑
i=1

PN+iuN+i . (3.30)
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The linearizing coordinates are then

Qi = ∂S

∂Pi
= 1

2

N−1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ− 1
2uN i = 1, . . . , N (3.31a)

QN+i = ∂S

∂PN+i
=

N−1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i i = 1, . . . , N. (3.31b)

By using (3.15a), the linear flow induced by the FDIHS (3.10) together with
equations (3.31) leads to the Jacobi inversion problem for the FDIHS (3.10)

N−1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ− uN = γi +

(
2λi −

N∑
k=1

Pk

)
x i = 1, . . . , N (3.32a)

N−1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i + 2PN+ix i = 1, . . . , N. (3.32b)

By using (3.15b), the linear flow induced by the FDIHS (3.11) and equations (3.31) result
in the Jacobi inversion problem for the FDIHS (3.11)

N−1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ− uN = γ̄i +

[
2λ2

i −
N∑
k=1

(λkPk + λiPk + P 2
N+k) + 3

4

( N∑
k=1

Pk

)2]
t2

i = 1, . . . , N (3.33a)

N−1∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γ̄N+i + PN+i

(
4λi −

N∑
k=1

Pk

)
t2

i = 1, . . . , N. (3.33b)

Then, since the AKNS equations (3.6) are factorized by the FDIHSs (3.10) and (3.11),
combining equations (3.32) with equations (3.33) gives rise to the Jacobi inversion problem
for the AKNS equations (3.6)

N−1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ− uN = γi +

(
2λi −

N∑
k=1

Pk

)
x

+

[
2λ2

i −
N∑
k=1

(
λkPk + λiPk + P 2

N+k

)
+ 3

4

( N∑
k=1

Pk

)2
]
t2 (3.34a)

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i + 2PN+ix + PN+i

(
4λi −

N∑
k=1

Pk

)
t2

i = 1, . . . , N. (3.34b)

If φ1j , ψ2j , q defined by (3.27) and (3.28) can be solved from (3.34) by using the Jacobi
inversion technique, thenφ2j , ψ1j can be obtained from the first equation and the last equation
in (3.10) by an algebraic calculation, respectively. Finally,q andr = 〈91,82〉 provide the
solution to the AKNS equations (3.6).

Comparing (2.20) with (3.13), one obtains

F̃0 = 1 F̃k =
N∑
j=1

[
λk−1
j Pj + (k − 1)λk−2

j P 2
N+j

]
k = 1, 2, . . . (3.35)
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whereF̃k, k = 1, 2, . . . , are also integrals of motion for both the FDIHS (3.10) and thetn-
binary constrained flow. Thenth AKNS equations (3.4) are factorized by thex-FDIHS (3.10)
and thetn-FDIHS with the HamiltonianFn given by

Fn = 2
n∑

m=0

(− 1
2

)m αm

m + 1

∑
l1+···+lm+1=n+1

F̃l1 . . . F̃lm+1 (3.36)

wherel1 > 1, . . . , lm+1 > 1, αm are given by (2.22c). We have the following proposition:

Proposition 6. The Jacobi inversion problem for thenth AKNS equations (3.4) is
N−1∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ− uN = γi +

(
2λi −

N∑
k=1

Pk

)
x

+2tn
n∑

m=0

(− 1
2)
mαm

∑
l1+···+lm+1=n+1

λ
lm+1−1
i F̃l1 . . . F̃lm i = 1, . . . , N

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+i = γN+i + 2PN+ix + 4tn
n∑

m=0

(− 1
2)
mαm

×
∑

l1+···+lm+1=n+1

(lm+1− 1)λlm+1−2
i PN+i F̃l1 . . . F̃lm i = 1, . . . , N

wherel1 > 1, . . . , lm+1 > 1, andF̃l1, . . . F̃lm , are given by (3.35).

3.2.2. For thek0 = 1 case with respect to the standard Poisson bracket,A(λ) andB(λ)
given by (3.20) also satisfy the commutator relation (2.31). One defines the firstN + 1 pair of
canonical variablesuk, vk, k = 1, . . . , N + 1, in the following way:

B(λ) = q +
1

2

N∑
j=1

ψ2jφ1j

λ− λj = euN+1R(λ)

K(λ)
(3.37a)

with

R(λ) =
N∏
k=1

(λ− uk) K(λ) =
N∏
k=1

(λ− λk)

and

vk = 2A(uk) k = 1, . . . , N (3.37b)

vN+1 = P0 = qr − 1
2(〈91,81〉 − 〈92,82〉). (3.37c)

Equation (3.24a) yields

uN+1 = ln q. (3.37d)

Then it is easy to verify that

{uN+1, B(µ)} = {vN+1, A(µ)} = 0 {vN+1, uN+1} = 1

{uN+1, A(µ)} = 0 {vN+1, B(µ)} = B(µ).
(3.38)

Similarly, we define

vN+1+j = 2PN+j j = 1, . . . , N (3.39a)

uN+1+j = ln
φ1j

ψ2j
j = 1, . . . , N. (3.39b)

In the same way we can show the following proposition.
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Proposition 7. Assume thatλj , φij , ψij ∈ R, i = 1, 2, j = 1, . . . , N . Introduce the
separated variablesu1, . . . , u2N+1 and v1, . . . , v2N+1 by (3.37) and (3.39). Ifu1, . . . , uN,

are single zeros ofB(λ), thenv1, . . . , v2N+1 andu1, . . . , u2N+1 are canonically conjugated,
i.e. they satisfy (1.1).

It follows from (3.37) that

q = euN+1 (3.40a)

φ1j =
√

2euN+1+uN+1+j R(λj )

K ′(λj )
ψ2j =

√
2euN+1−uN+1+j R(λj )

K ′(λj )
j = 1, . . . , N. (3.40b)

The firstN separated equations can be found by substitutinguk into (3.21) and using
(3.37b), the lastN + 1 separated equations are given by (3.37c) and (3.39a). They may be
integrated to give

S(u1, . . . , u2N+1) =
N∑
k=1

(
2
∫ uk √

P(λ) dλ + 2PN+kuN+1+k

)
+ P0uN+1 (3.41)

with P(λ) given by (3.21). Then the Jacobi inversion problem for the FDIHS (3.17) is
N∑
k=1

∫ uk 1√
P(λ)

dλ + uN+1 = γ0

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2x i = 1, . . . , N

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i i = 1, . . . , N.

(3.42)

The Jacobi inversion problem for the FDIHS (3.19) is
N∑
k=1

∫ uk 1√
P(λ)

dλ + uN+1 = γ0 − P0t2

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2λit2 i = 1, . . . , N

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i + 2PN+i t2 i = 1, . . . , N.

(3.43)

Finally, we have

Proposition 8. The Jacobi inversion problem for the AKNS equation (3.6) is
N∑
k=1

∫ uk 1√
P(λ)

dλ + uN+1 = γ0 − P0t2

N∑
k=1

∫ uk 1

(λ− λi)
√
P(λ)

dλ = γi + 2(x + λit2) i = 1, . . . , N

N∑
k=1

∫ uk PN+i

(λ− λi)2
√
P(λ)

dλ + uN+1+i = γN+i + 2PN+i t2 i = 1, . . . , N.

(3.44)

If φ1j , ψ2j , q defined by (3.40) can be solved from (3.44) by using the Jacobi inversion
technique, thenφ2j , ψ1j andr can be obtained from the equations in (3.17) by an algebraic
calculation, respectively. Finally,(q, r) provides the solution to the AKNS equations (3.6).
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3.2.3. The above procedure can be applied to all high-order binary constrained flows (3.8)
and whole AKNS hierarchy (3.4).

4. The separation of variables for the Kaup–Newell equations

4.1. Binary constrained flows of the Kaup–Newell hierarchy

For the Kaup–Newell spectral problem [31]

φx = U(u, λ) φ U(u, λ) =
( −λ2 qλ

rλ λ2

)
φ =

(
φ1

φ2

)
u =

(
q

r

)
(4.1)

take

φtn = V (n)(u, λ) φ V (n)(u, λ) =
n−1∑
i=0

(
a2iλ

2n−2i b2i+1λ
2n−2i−1

c2i+1λ
2n−2i−1 −a2iλ

2n−2i

)
(4.2)

where

a0 = 1 a2 = − 1
2qr b1 = −q

c1 = −r b3 = 1
2(q

2r + qx) c3 = 1
2(qr

2 − rx), . . .
and in generala2k+1 = b2k = c2k = 0(
c2k+1

b2k+1

)
= L

(
c2k−1

b2k−1

)
a2k = 1

2∂
−1(qc2k−1,x + rb2k−1,x) k = 1, 2, . . .

L = 1
2

(
∂ − r∂−1q∂ −r∂−1r∂

−q∂−1q∂ −∂ − q∂−1r∂

)
.

(4.3)

Then the compatibility condition of equations (4.1) and (4.2) gives rise to the Kaup–Newell
hierarchy [31]

utn =
(
q

r

)
tn

= J
(
c2n−1

b2n−1

)
= J δH2n−2

δu
n = 1, 2, . . . (4.4)

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J =
(

0 ∂

∂ 0

)
H2n = 4a2n+2− rc2n+1− qb2n+1

2n

(
c2n+1

b2n+1

)
= δH2n

δu
.

Forn = 2 we have

φt2 = V (2)(u, λ) φ V (2) =
(

λ4 − 1
2qrλ

2 −qλ3 + 1
2(q

2r + qx)λ

−rλ3 + 1
2(qr

2 − rx)λ −λ4 + 1
2qrλ

2

)
(4.5)

and the coupled derivative nonlinear Schrödinger (CDNS) equations obtained from
equation (4.4) forn = 2 read

qt2 = 1
2qxx + 1

2(q
2r)x rt2 = − 1

2rxx + 1
2(r

2q)x. (4.6)

The adjoint Kaup–Newell spectral problem is equation (2.7) withU given by (4.1). We
have [26]

δλ

δu
=
(
δλ/δq

δλ/δr

)
= Tr

[(
φ1ψ1 φ1ψ2

φ2ψ1 φ2ψ2

)
∂U(u, λ)

∂u

]
=
(
λψ1φ2

λψ2φ1

)
. (4.7)
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The binaryx-constrained flows of the Kaup–Newell hierarchy (4.4) are defined by

81,x = −3281 + q382 82,x = r381 +3282 (4.8a)

91,x = 3291− r392 92,x = −q391−3292 (4.8b)

δHk0

δu
−

N∑
j=1

δλj

δu
=
(
c2k0+1

b2k0+1

)
− 1

2

( 〈391,82〉
〈392,81〉

)
= 0. (4.8c)

Fork0 = 0, we have(
c1

b1

)
= −

(
r

q

)
= 1

2

( 〈391,82〉
〈392,81〉

)
. (4.9)

By substituting (4.9) into (4.8a) and (4.8b), the first binaryx-constrained flow becomes a
FDHS

81x = ∂F1

∂91
82x = ∂F1

∂92
91x = − ∂F1

∂81
92x = − ∂F1

∂82
(4.10)

with the Hamiltonian

F1 = 〈3292,82〉 − 〈3291,81〉 − 1
2〈392,81〉〈391,82〉.

Under the constraint (4.9) and the FDHS (4.10), the binaryt2-constrained flow obtained
from (4.5) and its adjoint equation forN distinct real numbersλj can also be written as a
FDHS

81,t2 =
∂F2

∂91
82,t2 =

∂F2

∂92
91,t2 = −

∂F2

∂81
92,t2 = −

∂F2

∂82
(4.11)

with the Hamiltonian

F2 = −〈3492,82〉 + 〈3491,81〉 + 1
2〈392,81〉〈3391,82〉

+1
2〈3392,81〉〈391,82〉 − 1

32〈392,81〉2〈391,82〉2

+1
8(〈3292,82〉 − 〈3291,81〉)〈392,81〉〈391,82〉.

The Lax representation for the FDHSs (4.10) and (4.11) are presented by (2.13) with the
entries of the Lax matrixM given by

A(λ) = 1 +
1

4

N∑
j=1

λ2
j (ψ1jφ1j − ψ2jφ2j )

λ2 − λ2
j

(4.12a)

B(λ) = 1

2
λ

N∑
j=1

λjψ2jφ1j

λ2 − λ2
j

C(λ) = 1

2
λ

N∑
j=1

λjψ1jφ2j

λ2 − λ2
j

. (4.12b)

A straightforward calculation yields

A2(λ) +B(λ)C(λ) ≡ P(λ) = 1 +
N∑
j=1

[
Pj

λ2 − λ2
j

+
λ4
jP

2
N+j

(λ2 − λ2
j )

2

]
(4.13)

wherePj , j = 1, . . . ,2N, are 2N independent integrals of motion for the FDHSs (4.10) and
(4.11)

Pj = − 1
2λ

2
j (ψ2jφ2j − ψ1jφ1j ) + 1

8〈392,81〉λjψ1jφ2j + 1
8〈391,82〉λjψ2jφ1j

+
1

8

∑
k 6=j

1

λ2
j − λ2

k

[
λ2
jλ

2
k(ψ1jφ1j − ψ2jφ2j )(ψ1kφ1k − ψ2kφ2k)

+2λjλk
(
λ2
j + λ2

k

)
ψ1jφ2jψ2kφ1k

]
j = 1, . . . , N (4.14a)

PN+j = 1
4(ψ1jφ1j +ψ2jφ2j ) j = 1, . . . , N. (4.14b)
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It is easy to verify that

F1 = −2
N∑
j=1

Pj F2 = 2
N∑
j=1

(
λ2
jPj + λ4

jP
2
N+j

)− 1
2

( N∑
j=1

Pj

)2

(4.15a)

〈92,82〉 + 〈91,81〉 = 4
N∑
j=1

PN+j . (4.15b)

By insertingλ = 0, equation (4.13) leads to

1 + 1
4(〈92,82〉 − 〈91,81〉) =

√
P(0) =

√√√√1 +
N∑
j=1

[−Pjλ−2
j + P 2

N+j

]
. (4.16)

With respect to the standard Poisson bracket it is found that

{A(λ),A(µ)} = {B(λ), B(µ)} (4.17a)

{A(λ), B(µ)} = µ

2(λ2 − µ2)
[µB(µ)− λB(λ)]. (4.17b)

Then{A2(λ) + B(λ)C(λ),A2(µ) + B(µ)C(µ)} = 0 implies thatPj , j = 1, . . . ,2N, are in
involution. The CDNS equations (4.6) are factorized by thex-FDIHS (4.10) and thet2-FDIHS
(4.11), namely, if(91, 92,81,82) satisfies the FDIHSs (4.10) and (4.11) simultaneously,
then (q, r) given by (4.9) solves the CDNS equations (4.6). The factorization of thenth
Kaup–Newell equations (4.4) will be presented in the end of section 4.2.

4.2. The separation of variables for the Kaup–Newell equations

Since the commutator relations (4.17) are quite different from (2.31) and (3.23), we have to
modify a little bit of the method presented in sections 2 and 3. Let us denoteλ̃ = λ2, λ̃j = λ2

j .
The entries of the Lax matrixM given by (4.12) can be rewritten as

A(λ̃) = 1 + 1
4(〈92,82〉 − 〈91,81〉) + 1

2 λ̃Ā(λ̃) B(λ̃) = 1
2

√
λ̃B̄(λ̃) (4.18a)

where

Ā(λ̃) = 1

2

N∑
j=1

ψ1jφ1j − ψ2jφ2j

λ̃− λ̃j
B̄(λ̃) =

N∑
j=1

√
λ̃jψ2jφ1j

λ̃− λ̃j
. (4.18b)

It is easy to see that

{Ā(λ̃), Ā(µ̃)} = {B̄(λ̃), B̄(µ̃)} = 0 (4.19a)

{Ā(λ̃), B̄(µ̃)} = 1

λ̃− µ̃ [B̄(µ̃)− B̄(λ̃)]. (4.19b)

It follows from (4.16) and (4.18a) that

A(λ̃) =
√√√√1 +

N∑
j=1

[−Pj λ̃−1
j + P 2

N+j

]
+ 1

2 λ̃Ā(λ̃). (4.19c)

The commutator relations (4.19) and the generating function of integrals of motion (4.13)
enable us to introduceu1, . . . , uN in the following way:

B̄(λ̃) =
N∑
j=1

√
λ̃jψ2jφ1j

λ̃− λ̃j
= euN

R(λ̃)

K(λ̃)
(4.20a)
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with

R(λ̃) =
N−1∏
k=1

(λ̃− uk) K(λ̃) =
N∏
k=1

(λ̃− λ̃k)

andv1, . . . , vN by Ā(λ̃):

vk = Ā(uk) k = 1, . . . , N − 1 (4.20b)

vN = −〈92,82〉. (4.20c)

Equation (4.20a) yields

uN = ln〈392,81〉. (4.20d)

Similarly, we define

vN+j = 2PN+j j = 1, . . . , N (4.21a)

uN+j = ln
φ1j

ψ2j
j = 1, . . . , N. (4.21b)

Then we have

Proposition 9. Assume thatλj , φij , ψij ∈ R, i = 1, 2, j = 1, . . . , N . Introduce the
separated variablesu1, . . . , u2N andv1, . . . , v2N by (4.20) and (4.21). Ifu1, . . . , uN−1, are
single zeros of̄B(λ), thenv1, . . . , v2N andu1, . . . , u2N are canonically conjugated, i.e. they
satisfy (1.1).

It follows from (4.9), (4.20a), (4.20d) and (4.21b) that

q = − 1
2euN (4.22a)

φ1j =
√√√√euN+uN+j R(λ2

j )

λjK ′(λ2
j )

ψ2j =
√√√√euN−uN+j R(λ2

j )

λjK ′(λ2
j )

j = 1, . . . , N. (4.22b)

By substitutinguk into (4.13) and using (4.16) and (4.19c), one obtains the firstN − 1
separated equations

vk = Ā(uk) = 2

uk

[√
P̃ (uk)−

√
P(0)

]
k = 1, . . . , N − 1 (4.23a)

whereP(0) are given by (4.16) and

P̃ (λ̃) = 1 +
N∑
j=1

[
Pj

λ̃− λ2
j

+
λ4
jP

2
N+j

(λ̃− λ2
j )

2

]
.

It follows from (4.15b), (4.16) and (4.20c) that

vN = 2− 2
√
P(0)− 2

N∑
i=1

PN+i . (4.23b)

The separated equations (4.23) and (4.21a) may be integrated to give the generating function
of the canonical transformation

S(u1, . . . , u2N) =
N−1∑
k=1

[∫ uk 2

λ̃

√
P̃ (λ̃) dλ̃− 2

√
P(0) ln |uk|

]

+

(
2− 2

√
P(0)− 2

N∑
i=1

PN+i

)
uN + 2

N∑
i=1

PN+iuN+i . (4.24)
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The Jacobi inversion problem for the FDIHS (4.10) is

N−1∑
k=1

[∫ uk 1

λ̃(λ̃− λ2
i )

√
P̃ (λ̃)

dλ̃ +
1

λ2
i

√
P(0)

ln |uk|
]

+
1

λ2
i

√
P(0)

uN = γi − 2x

N−1∑
k=1

[∫ uk λ4
i PN+i

λ̃(λ̃− λ2
i )

2

√
P̃ (λ̃)

dλ̃− PN+i√
P(0)

ln |uk|
]

−
(
PN+i√
P(0)

+ 1

)
uN + uN+i = γN+i i = 1, . . . , N.

(4.25)

The Jacobi inversion problem for the FDIHS (4.11) is

N−1∑
k=1

[∫ uk 1

λ̃(λ̃− λ2
i )

√
P̃ (λ̃)

dλ̃ +
1

λ2
i

√
P(0)

ln |uk|
]

+
1

λ2
i

√
P(0)

uN

= γ̄i +

(
2λ2

i −
N∑
k=1

Pk

)
t2

N−1∑
k=1

[∫ uk λ4
i PN+i

λ̃(λ̃− λ2
i )

2

√
P̃ (λ̃)

dλ̃− PN+i√
P(0)

ln |uk|
]

−
(
PN+i√
P(0)

+ 1

)
uN + uN+i = γ̄N+i + 2λ4

i PN+i t2 i = 1, . . . , N. (4.26)

Finally, since the CDNS equations (4.6) are factorized by the FDIHS (4.10) and (4.11),
combining equation (4.25) with (4.26) gives rise to the Jacobi inversion problem for the CDNS
equations (4.6),

N−1∑
k=1

[∫ uk 1

λ̃(λ̃− λ2
i )

√
P̃ (λ̃)

dλ̃ +
1

λ2
i

√
P(0)

ln |uk|
]

+
1

λ2
i

√
P(0)

uN

= γi − 2x +

(
2λ2

i −
N∑
k=1

Pk

)
t2 i = 1, . . . , N (4.27a)

N−1∑
k=1

[∫ uk λ4
i PN+i

λ̃(λ̃− λ2
i )

2

√
P̃ (λ̃)

dλ̃− PN+i√
P(0)

ln |uk|
]

−
(
PN+i√
P(0)

+ 1

)
uN + uN+i = γN+i + 2λ4

i PN+i t2 i = 1, . . . , N. (4.27b)

If φ1j , ψ2j , q defined by (4.22) can be solved from (4.27) by using the Jacobi inversion
technique, thenφ2j , ψ1j can be obtained from the first equation and the last equation in (4.10),
respectively. Finally,q andr = −〈391,82〉provide the solution to the CDNS equations (4.6).

In general, the above procedure can be applied to the whole Kaup–Newell hierarchy (4.4).
Set

A2(λ) +B(λ)C(λ) =
∞∑
k=0

F̃kλ
−2k (4.28a)
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whereF̃k, k = 1, 2, . . . , are also integrals of motion for both thex-FDHSs (4.10) and the
tn-binary constrained flows (2.16). Comparing (4.28a) with (4.13), one obtains

F̃0 = 1 F̃k =
N∑
j=1

[
λ2k−2
j Pj + (k − 1)λ2k

j P
2
N+j

]
k = 1, 2, . . . . (4.28b)

By employing the method in [28, 29], thetn-FDIHS obtained from thetn-constrained flow is
of the form

81,tn =
∂Fn

∂91
82,tn =

∂Fn

∂92
91,tn = −

∂Fn

∂81
92,tn = −

∂Fn

∂82
(4.29a)

with the Hamiltonian

Fn = 2
n−1∑
m=0

(− 1
2)
m αm

m + 1

∑
l1+···+lm+1=n

F̃l1 . . . F̃lm+1 (4.29b)

where l1 > 1, . . . , lm+1 > 1, and αm are given by (2.22). Since thenth Kaup–Newell
equations (4.4) are factorized by thex-FDIHS (4.10) and thetn-FDIHS (4.29). We have
the following proposition.

Proposition 10. The Jacobi inversion problem for thenth Kaup–Newell equations (4.4) is
given by

N−1∑
k=1

[∫ uk 1

λ̃(λ̃− λ2
i )

√
P̃ (λ̃)

dλ̃ +
1

λ2
i

√
P(0)

ln |uk|
]

+
1

λ2
i

√
P(0)

uN

= γi − 2x + 2tn
n−1∑
m=0

(− 1
2)
mαm

∑
l1+···+lm+1=n

λ
2lm+1−2
i F̃l1 . . . F̃lm i = 1, . . . , N

(4.30a)

N−1∑
k=1

[∫ uk λ4
i PN+i

λ̃(λ̃− λ2
i )

2

√
P̃ (λ̃)

dλ̃− PN+i√
P(0)

ln |uk|
]
−
(
PN+i√
P(0)

+ 1

)
uN + uN+i

= γN+i + 2tn
n−1∑
m=0

(− 1
2)
mαm

∑
l1+···+lm+1=n

(lm+1− 1)λ2lm+1
i PN+i F̃l1 . . . F̃lm

i = 1, . . . , N (4.30b)

wherel1 > 1, . . . , lm+1 > 1, andF̃l1, . . . , F̃lm , are given by (4.28b).

For example, the third equations in the Kaup–Newell hierarchy withn = 3 are of the form

qt3 = − 1
4qxxx − 3

8

(
q3r2 + 2qrqx

)
x

rt3 = − 1
4rxxx − 3

8

(
r3q2 − 2qrrx

)
x
. (4.31)

The Kaup–Newell equations (4.31) can be factorized by thex-FDIHS (4.10) andt3-FDIHS
with the HamiltonianF3 defined by

F3 =
N∑
j=1

(
2λ4

jPj + 4λ6
jP

2
N+j

)− [ N∑
j=1

(
λ2
jPj + λ4

jP
2
N+j

)] N∑
j=1

Pj + 1
4

( N∑
j=1

Pj

)3

. (4.32)
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The Jacobi inversion problem for equations (4.31) is given by

N−1∑
k=1

[∫ uk 1

λ̃(λ̃− λ2
i )

√
P̃ (λ̃)

dλ̃ +
1

λ2
i

√
P(0)

ln |uk|
]

+
1

λ2
i

√
P(0)

uN

= γi − 2x +

[
2λ4

i −
N∑
j=1

(
λ2
jPj + λ2

i Pj + λ4
jP

2
N+j

)
+ 3

4

( N∑
j=1

Pj

)2
]
t3

i = 1, . . . , N

N−1∑
k=1

[∫ uk λ4
i PN+i

λ̃
(
λ̃− λ2

i

)2√
P̃ (λ̃)

dλ̃− PN+i√
P(0)

ln |uk|
]
−
(
PN+i√
P(0)

+ 1

)
uN + uN+i

= γN+i +

[
4λ6

i PN+i − λ4
i PN+j

N∑
j=1

Pj

]
t3 i = 1, . . . , N.

In general, the method can be applied to all high-order binary constrained flows (4.8) and
whole KN hierarchy (4.4) in exactly the same way.

5. Concluding remarks

For high-order binary constrained flows, the method in [1–6] allows us to directly introduce
N+k0 pairs of canonical separated variables andN+k0 separated equations via the Lax matrices
and the generating function of the integrals of motion. In this paper we propose a new method
for determining additionalN pairs of canonical separated variables andN additional separated
equations for high-order binary constrained flows by directly usingN additional integrals of
motion. This method is completely different from that proposed in [23, 24] and can be applied
to all high-order binary constrained flows and other soliton hierarchies admitting 2× 2 Lax
pairs.
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